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The variational method developed by Baxter is applied to the zero-field 
Ising model on the square lattice. The problem is simplified to that of 
solving a relatively small system of nonlinear equations. The estimates to 
the spontaneous magnetization and the critical temperature from the 
sequence of variational approximations are obtained. The results converge 
rapidly to the exact ones. They exhibit a crossover phenomenon and satisfy 
a scaling relation. 

KEY W O R D S  : Ising model; variational approximation ; spinor representa- 
tives; crossover phenomena; scaling. 

1,  I N T R O D U C T I O N  

We report here an investigation on the convergence of a variational method 
when applied to the zero-field Ising model. 

The technique was applied to the monomer-dimer system in 1968 by 
Baxte61~ and to the zero-field Potts model in 1976 by Kelland. ~2~ Recently, 
Baxter extended the method to a fairly general Ising model on the square 
lattice. (3~ A set of matrix equations was obtained and a rapidly convergent 
sequence of approximations to the free energy was developed. It is the purpose 
of this work to test the convergence of this approach. We apply the method 
to the zero-field, square lattice Ising model. With this system, it is possible 
for us to compare the results of the various approximations with the exact 
solution of  the model. 

The sequence of approximations generated by the method is solved 
numerically for the spontaneous magnetization below the critical point and 
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for the critical temperature of the system. The convergence of the results to 
the exact values and the critical behavior of the spontaneous magnetization 
are studied. The variational method is found to give good estimates to the 
thermodynamic properties of the system. 

We will give the set of variational equations for the case of the zero-field, 
square lattice Ising model in Section 2. In Section 3, the technique of spinor 
representations is used to simplify the matrix equations. The problem is 
reduced to one of solving a relatively small system of nonlinear equations. 
The analytic solution of these equations for the infinite system is given in 
Section 4. For the finite system, the equations are solved numerically for the 
spontaneous magnetization and the critical temperature, and the results are 
presented in Section 5. They support a scaling hypothesis for the spontaneous 
magnetization. 

2. V A R I A T I O N A L  EQUATIONS OF THE ISING M O D E L  

The model considered here is a set of spins, with values +1 or - 1 ,  on 
a square lattice with nearest neighbor interaction energy coefficient J in both 
the vertical and horizontal directions. It is readily seen that the model is a 
special case of that considered by Baxter and hence we may start our formu- 
lation from the set of variational equations given in Eqs. (30) of Ref. 3. 
The reader is referred to Ref. 3 for the derivation of the equations and the 
significance of the matrices involved. 

The equations may be written as 

and 

~, F(a, (~')A2(a')F(a ', a) = A2(a) (la) 

W(~, c/, y, y')F(a, a')A(a')F(a', y')A(y')F(y', ~,) 

= ~A(~)F(~ ,  ~,)A(~,) (lb) 

where ~, ~', ~,, and ~' take the spin values of + 1 or - 1  and 

W(a, a', ~, ~') = exp{[2J(~d + ~ '  + a?, + a'~') 

+ H(~ + ~' + ~, + ~/)l/4k~T} (2) 

is the weight function of a face of the square lattice, with T the temperature 
of the system, kn the Boltzmann constant, and H the magnetic field. Each of 
A(+) ,  A ( - ) ,  F ( + ,  +),  F ( + ,  - ) ,  F ( - ,  +),  and F ( - ,  - )  is a 2 m x 2 m 
matrix. 
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With suitable normalization, one can use a representation in which 
A(+ ) and A( - ) are diagonal, the maximum diagonal element of A( + ) being 
unity. The matrices F(a, a') satisfy the symmetry properties 

F(,, ,  ~,') = F~( , ,  ', ,,) (3) 

In the thermodynamic limit, the partition function per site of the system 
is K. By taking m = 0, 1, 2 ..... a sequence of variational approximations may 
be obtained for K. The case for m = 0 is found to be the same as the Kramers-  
Wannier approximation. (3'4) 

Following a similar procedure to Ref. 3, we define matrices 

H(a, ~')7) = ~ W(o, 7', 7, a')Fr(7 ', e)A(7')F(7', el) (4) 

( A ( + ) F ( + ,  , ,)A- ~(,,)] 
F~(,,) = \A(  - ) f ( - ,  ,,)A - ~(~)! 

(5) 

and 

v(~) = ( H ( + ,  + I~) H ( + ,  - I ~ ) ]  
\ H ( - ,  + ],r) H ( - ,  - l a)] (6) 

Equation (lb) can be written as 

U(,,)F~(,,) = KF~(~)A(~,) (7) 

It follows that the elements of xA(cr) are contained in the set of eigen- 
values of U(a) and all the column vectors of F2(~) are eigenvectors of U(a). 
So, with a knowledge of the leading order behavior of the elements of A(g), 
we are able to select from the set of eigenvalues of U(a) the appropriate 
elements for the matrices KA(~) and hence obtain the solution for F(c~, ~') 
also from the corresponding eigenvectors of U(e). 

Define the 2 m + 2 x 2 m + 2 matrix V by 

V = ( U ( + )  U ( - ) )  (8) 

and write A(~) as 

A(. )  -~ (a l ) ,  j = 1, 2, 3 ..... 2 '~ (9) 

Let P be an orthogonal matrix which diagonalizes V. Order the column 
vectors of P in such a way that at low temperatures P is almost diagonal 
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(i.e., p~,~ ___ 1 and p~,j << Pz,~ for l # j ) ,  and let the corresponding diagonal 
matrix containing the eigenvalues of  V be 

dl + 

C = 

�9 , ~ 

as- 
~  

a.- 

(lO) 

where ~ = 2 m + x. We then find that  

K = d~ + (11) 

and 

a J  = d~j_l/d~ +, j = 1, 2, 3 ..... 2 m (12) 

F(a,  a') can be evaluated f rom the corresponding eigenvectors o f  V. 

3. THE V A R I A T I O N A L  EQUATIONS IN THEIR 
REPRESENTATIVES 

3.1. The Representatives of the Matr ices 

The argument  up to now is still applicable even in the presence o f  a 
magnetic field. However,  since we are interested in the convergence of  the 
sequence of  approximations to the exact solution as m increases, we will 
focus our  at tention on the case in which the magnetic field is zero. In  this 
case, we are able to apply Kaufmann '~  technique o f  spinor representations/5) 

Given a set of  spinor operators Pj o f  dimensions 2 v x 2 v ( j  = 1, 2 ..... ix; 
>t 2p) satisfying the an t icommuta t ion  rule 

r j r z +  P~Pj = 2~,~, j,  l = 1, 2 ..... ~ (13) 

there exists a group of  nonsingular  2 p x 2 p matrices such that  for all matrices 
X in the group,  

~t 

X I ' j X  -~ = ~ 2z.jI'z, j = 1, 2 ..... ~ (14) 
l = 1  

for some scalar ~z.j. The matrix formed by the elements (2~,j) is called the 
representative of  X under  the set o f  operators Fj and is denoted by .~. 
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In order to formulate the problem in the spinor representations, we define 
a set of (2p + 1) spinor operators, 

P l  = s l ;  F2 = (c ls2  + id~)/~r 

r~j = c~ ... cj_l(cjsj+l + iclj)/V2 

P2s + I = cl  "'" c j_  l ( c j s j  + 1 - idy)/~r j =  2,3 ..... p 

(15) 

where sj, cj, and d t are the Pauli spin operators acting on the j th  spin and 
i = V - - - T  

and 

S j =  (10 __~), c j =  ( ~  lo), d j =  ( 0  - ; )  (16) 

is the identity matrix�9 The set of operators is not totally anticommuting with 
each other, yet the representatives under this set of operators can be obtained 
by a similarity transformation from the following set of (2p + I) anti- 
commuting operators: 

P l '  = s l  ; F2' = d l ;  F3' = cls2 
(17) 

F~j = c l  "" c j_  ld j ;  F'2j + 1 = cl  "" c js j  + 1, j = 2, 3 . . . . .  p 

The representatives X ~ under the Fj are related to that (.~') under the F / b y  

2 = R - ~ 2 ' R  (18) 

where 

R = 

1 

i/V~ -ilv/~ 

1/V~ 1/V~ 

i/V~ - i /V~  

1/V~ 1/V~ 

�9 , o 

(19) 

Clearly, the representatives under (15) also form a group G and one can 
establish the following properties of the representatives: 

(i) The inverse of any X in G is given by 

f ( -  ~ = L X Z L  (20) 
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where 

L = 

1 

O1 
10 

O1 
10 

(21) 

(i.i) If  X is diagonal, it must be of the form 

P 

X = p x 1 ~  �89 + yj) + (1 - y,)s,sj+~] (22) 
J = l  

where p is some scalar factor, and J? is diagonal, with diagonal elements 
xl ,  x~ ..... x2p +, satisfying 

x~ = 1, x2j+~ = l[x2j  = y j ,  j = 1, 2 ..... p (23) 

(iii) If  X is real and symmetric, then J~ is real and symmetric. 
(iv) If  X is orthogonal, )( is orthogonal and has the following structure: 

a q q r r . .  

s u v f  g 

s v u g f (24) 
2 - =  t y z l h 

t z y h l  

! " .  

It is more convenient to define matrices 

and 

where 

d=(A(+) A(-)) (253 

( v(+ ,+) 
= \ z l I 2 F ( - ,  + )  F ( - ,  - )  J 

(26) 

z = e x p ( - 2 J / k ~ T )  (27) 

It can be verified that the representatives of d and o~ exist under (15) with 
p = m + 1. For  matrices V, P, and C, we apply an enlarged set of operators 
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P ~  defined similarly in (15) with p = m + 2. F r o m  the definitions of  the 

matrices V, P, and C, and the representatives, one can obtain I7" f rom o& 

and also ~ f rom P. So, in a similar way to Ref. 3, an iterative procedure for 
solving the equations may be developed. 

3.2. Iterative Method of Solution 

Given a reasonable initial guess of ~ and ~ at a particular value of  z 
and setting n = m + 2: 

(i) Define 0 by 

0 = ~ 2 ~  _= (u,,;), 

Then I7" is given by 

l , j =  1,2 ..... 2 n -  1 (28) 

o o o !) 
(u1,1 + I)/2z �89 - I) ( 2 z ) - Z / S u l , j _ 2  

}z(u, , ,  + 1) (z/2)*:~u,,j_~ 

Ut-2,$-2 

Note  that  i7" is symmetric. 
(ii) Solve the eigenvalue equat ion 

l , j - - 4 , 5  ..... 2n + 1 (29) 

v P  = P c  (30) 

for  C and P such that  C is diagonal and 16 is or thogonal  and almost diagonal. 

(iii) With C -= (aj), j = 1, 2 ..... 2n + 1, ~ is obtained by truncating the 
last two rows and columns of  (9, i.e., 

= (aj), j = 1, 2 ..... 2n - 1 (31) 

(iv) Given P = (Pl,j), l, j = 1, 2 ..... 2n + 1, we define (h~w), l , j  = 1, 

2 ..... 2n - 1, by 

h1,1 = (P2,~,~ + Pa,2,~)/(P2,~. - Ps,z,~) 

hl,j = (a#V2)[(p2,j  + Pa,i) - (P2.s - Pa,j)(Pz,2. + Pa ,2 ,d / (P2 , z .  - Pa,2.)] 

by,1 = "V/~2 a f l [ p y +  2 ,2 . / (p2 ,~ .  - Pa,z.)] (32) 

hz,j = a F ~ [ p , + 2 , j  - Pz+2,2,~(Pz,~ - Pa,j)/(P2,~,~ - pa,2,~)]aj 
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Then,  f rom (5) and (26) we have 

l hl,l + v ', hl j t 
f - - #  + 

. . . . . . .  I . . . . . . . . . . . . . . .  

~4" = ~ ' h vhz,jh,,z l ,  l, j = 2, 3 ..... 2n - 1 (33) 

where v = tanh(JIkBT). 
The whole procedure  m a y  be repeated until we arrive at  a solution of  

and ~ with sat isfactory accuracy.  

3.3. Symmetry Properties of 

The p rob lem can be fur ther  simplified by  using the symmet ry  propert ies  

of  oC.. Since o~ is symmetric ,  it follows f rom (33) tha t  

hz,s = hj,l for  l , j  = 1, 2 , . . .  2n -- 1 (34) 

In  view of  (32) and,  at the same time, noting the special structure of  t5 
f rom proper ty  (iv) o f  the representatives,  we find tha t  P2,j for  j = 2, 3 ..... 
2n + 1 and  Pj+2,j f o r j  = 2, 3 ..... 2n - 1 are the only independent  elements 
of  P. 

First, it is trivial t ha tp l ,1  = 1 a n d p l , j  = pj,~ = 0. I f  we define 

~j = a j  2, t3, = (1 + aj~), j =  2 ,3  ..... 2 n -  1 
(35) 

/3u. = m,  /3=.+I = 1 

then 

where 

p ,+=. j  = - p = . , p , . , ) / ( S j  - 5 , )  

IV=j, I = 2 , 3  ..... 2 n -  1, j = 2 , 3  ..... 2 n + l  

Ps,zj = P2,2j+l 

Pa.2j+I = P2.2j for  j = 1, 2 . . .  n 

One can substitute (36) into (33) to obtain ~-, I f  we write 

~'=- (fz,j), l , j  = 1 ,2  ..... 2n - 1 
then 

f~,t = (P2,2~ + zpz.2~+t)/g2~ 
f l , j  = fj,1 = (2z)i/2ajrj/([3jg2~) 

fj,j = Pj + 2,j - ~jgjrj/(~sg~.) 
fj,~ = ajaz(gjrz - g~rj)/~j - ~z)g2. 

=f~, j ,  j ~ l ;  j , l = 2 , 3  ..... 2 n -  1 

(36a) 

(36b) 

(37) 

(38) 
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where 

g j  = P2, j  - z p 3 , j ,  r j  = [3s(p2,2.p3,j  - P3,2~P~.j)  (39) 

The main problem in the iterative procedure is to solve Eq. (30). How- 
ever, together with the or thogonal i ty  properties of  P, i.e., 

P P ~  = I (40) 

relations f rom (29) and (38), and the fact that  

azg = 1 /a2 j+ l  for  j = 1, 2 ..... n (41) 

we observe that  

1 - za2 j  + 1 j = 1, 2 .. . . .  n (42a) 
P2,zj = P9.,2t+1 z - a2i+1 ' 

P~+ 2,j = 4 z ( 1  - z 2) -4a-~ _ (z  - -a-j) 9" + (z  -" ae.)2------a2.a~aj 
(42b) 

j = 2 , 3  ..... 2 n -  1 

Hence,  the matrix equations involve only 2n independent  variables, namely 

a2j+l and P2 ,2 j+ l  for  j = 1,2 ..... n 

After some tedious, yet s traightforward calculations, the matrix equations are 
found to be equivalent to 2n independent  equations involving these 2n vari- 
ables. To  simplify the notat ion,  we define 

cj  = a2j+ 1, c1_ j = l / c j  = a2j ,  j = 1, 2 .. . . .  n (43a) 
2 = w l - ~  = f i 2 j + l P 2 , 2 j + l / ( z  - a z j + l ) Z a 2 j + l ,  j = l, 2 ..... n - 1 (43b) wj  

and 

Wn = p~ , z ,~+l /a2n+l ( z  - a2,~+1) 2 

The equations then become 

w j4 +z=z_.r wlczcj2(C~cz 4 -  cJ ~- c;) + " ~ c j  - 
Cn 2 \ 

-~- Cn2Cj 2 -- Cn3Cj3 I 
C j2 ] 

(43c) 

Wj .-1Z w c'2c'(cz- c') + w.(c. j - + c. 2 
t=2-n~Y Cl~ -- C] 4 CJ 2 CJ 3] 

= �88162 j = 1, 2 ..... n -- 1 (44b) 

1 + z  2 
" - S  wtcz3 + w.en(1  + e. 2) = (1 z2) - - - - ' - ' - 2  (44c) 

z = 2 - , ~  1 + el 4" 

n - 1  WlCt 2 + 2WnC 2 =  2Z 
1 + C, --------q (1 -- Z2) - - - - ' - ' ~  (44d) 

l = 2 - n  

= �88162 j = 1, 2 ..... n - 1 (44a) 
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where 

4(u)  = 
(1 + z2) 2 

z(1 - z~) 2 w"e"4(u4 + 2 + u -~) 

Hence, the iterative procedure for the solution can be 
solving the system of equations (44) for the cj and the w~. 

S. K. Tsang 

(45) 

replaced by 

3.4. Polynomial Form of Equations 

Define, for all complex numbers u, 

G(u) = w,~[c,~(u - u -1) + c,~2(u 2 - u -2) + cO(u s - u-a)] 

1 ~ '~-I w j ( c j + u )  (46) + 

From (43a), G(u) satisfies the relation 

G(u) + G(u -1 )  = 0 (47) 

In terms of this function, Eqs. (44a) and (44b) can be written as 

2 G ( - u )  - (1 + i )G(iu)  - (1 - i ) G ( - i u )  = ~b(u) (48a) 

- 2 G ( - u )  + (1 - i )G(iu)  + (1 + i ) G ( - i u )  --- q~(u) (48b) 

for u = c2- ,  .... , c._1, where ~(u) is defined by (45) and i = ~/--'-f. An 
equivalent and simpler form of this pair of equations is 

2 i [ G ( - u )  - G(iu)] = ~(u) (49a) 

- 2i [G(-  u) - G ( -  iu)] = ,}(u) (49b) 

for u = c2- ,  ..... c,_ 1- We now define f ( u )  by 

r ~ - - i  

f ( u )  = 1--I (u - cj) (50) 
J = 2  - n  

By examining the zeros and poles of (49), one can easily verify the identity, 
true for all complex numbers u, 

f ( u ) f ( -  iu) ~(u) (51) 
2 i [ 6 ( -  u) - G(iu)l  =- (~(u) f ( -  u) f ( iu)  

where u4a(u) is a polynomial in u of degree eight. Further, 

,~*(u) = e~(iu) = a(1/u) (52) 

Hence, ~ ( -wu)  is a polynomial in (u + u-1) and 

o0 = 1) (53) 
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where 

~o ~ = - 1 ,  w = (1 + i)/V'2 (54) 

It is clear that uS~(u)~( - u) is a polynomial in u 4 and so it is possible to 
factorize c~(u) into the form 

a(u) = const x p(u )p ( - iu )  (55) 

For  convenience, we define the constant to be w,c,  ~. 

Three additional equations can be obtained from (51) by replacing u by 
iu, - u ,  and - i u ,  respectively. The function G(u) can be eliminated between 
these four forms of (51), giving 

4}(u) = f ( u ) [ f 2 ( -  iu)~(u) + f=(iu)~(iu)] 
f ( i u ) f ( -  u ) f ( -  iu) 

f ( -  u)[f2(iu)o:(- u) + f 2 ( _  i u )a ( -  iu) ] 
+ f ( u ) f ( i u ) f ( -  iu) (56) 

If  we consider poles of f ( - u )  in the equation, it can be easily seen that 
f ( - u )  must be a factor of [ f2 (_  iu)o~(u) + f2(iu)~(iu)] and since p(u) is a 
factor of both c~(u) and c~(iu) from (55), we obtain 

f 2 ( _  i u )p ( -  iu) + f2(iu)p(iu) = f ( -  u)R(u) (57) 

for some polynomial R(u). The left-hand side of (57) is unaltered by negating 
u, sof (u)  must be a factor of R(u), i.e., 

R(u) = f(u)cr(u) (58) 

where o(u) is an even function of u. Substituting (57) and (58) into (56), we 
find that 

4w,c,~'~(u) = a(iu)a(u) (59) 

It follows that 

where 

g(u) = -2w,~c,~(u z - mo + u-2) (60) 

mo = [(1 + z~)2/z(1 - z2)2w, c,~] 112 (61) 

The negative sign of (60) is chosen so as to fit the limit of the left-hand side 
of (57) as u approaches zero. 

We can solve for p(u) from Eqs. (44c) and (44d). From these equations, 

~(w -1) = ~ ( - w  -1) = (1 - 6z 2 + z4)/z(1 - z2) 2 (62) 

and together with the definition of ~(u), we find that 

p(u) = (hi - u - u-1)(h2 - u - u - l )  (63) 
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where 

hi 2 = 2 + mo(1 + 2z - z2)/(1 + z 2) (64a) 

h22 = 2 + too(1 - 2z - z2)/(1 + z 2) (64b) 

In summary, the matrix equations are reduced to the following poly- 
nomial equation involving c~ ( j  = 1, 2 ..... n - 1) and mo only: 

p ( i u ) p ( i u )  + p( - iu ) f2 (  - iu) = - 2(u 2 - mo + u -  2 ) f ( u ) f (  - u)  (65) 

wheref(u) ,  p(u), and mo are given by (50), (63), and (61), respectively. 

4. THE INFINITE SOLUTION 

It is possible to solve the problem for the infinite system by noting the 
fact that the matrices sr and o~ should tend toward the corresponding 
"corner  transfer matr ix" and row (or column) transfer matrix of the infinite 
lattice as their limit, when n approaches infinity. (3~ 

Since s~ is diagonal from property (ii) of the spinor representations, with 
an appropriate normalization and arrangement of rows and columns, d can 
be written as 

,~'= (~ C01)@ (~ C02)@'"@ (d c.~1) (66) 
f o r n  = 1,2 ..... 

The corner transfer matrices for the square lattice Ising model were 
obtained by Baxter in 1977. (7~ For  the case n = ~ ,  the corresponding corner 
transfer matrix for ~r is similar to that considered by Ref. 7 except that 
instead of having diagonal interaction energy coefficients J and J ' ,  we have 
interaction energy coefficient J in both the horizontal and vertical directions 
(Fig. 1). Hence, using a similar argument as Ref. 7, we obtain, within a 
normalization constant, 

d =  (10 ql0/~)@ (10 qaO~)| (67) 

o r  

cj = q(2j-1~/4, j = 1, 2,.. (68) 

for n = ~ ,  where q is the nome of the elliptic function with modulus 

k = s i n h - 2 ( 2 J / k B T )  (69) 

Substituting (68) into (44) with c. equal to zero and the summation being 
from negative infinity to positive infinity for n = ~ ,  we obtain 

w j  = ,~ / (2 zK) ,  j = 1, 2 .... (70 )  
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+ + 
! 
! ! 
! 
| 

. I  

g ' l z -  J 
Fig. 1. The upper right corner of the lattice, ~J,'~ 
corresponding to the "corner transfer Id,/&. 
matrix" d .  g~ g2 

+ 

t- 

-i- 

+ 

emlm mi~ 

where K is the complete  elliptic integral o f  the first kind o f  modulus  k. 

Hence,  f rom (37) and (38), 04" is given by 

f : , :  = (1 + z2)/(1 - z 2) 

A , j  = fJ,~ = ( 2 z ) ~ %  

fj,~ = (1 - zZ)y ,y~( f l ja~  - f l~aj)[(~j  - fit), ] r l (71) 

(1 + z2) 2 (1 - z 2 ) y j 2 ( 3 a y  ~ - 1) 
fJ,s = ~z(1- 22 ~-) + 4aj3 , j ,  I >t 2 

where aj is related to cj th rough (43a) and is given by 

a 2 s + l  = 1 / a j  = q~Z~-l~/~, j = 1, 2, 3 .... (72a) 

fls = 1 + aj 4 (72b) 

and 

with 

y j  = s g n ( j ) [ r r a ~ a  / (2zKf l~ ) ]  1/~ (72c) 

F o r  finite n, we are able to solve the equat ions numerical ly only. How-  
ever, the n = oo solution for  a given matr ix  element is approximate ly  correct  
for  finite n at low temperature ,  at  least to leading order.  Hence,  they serve 
as a good  initial guess to  the solution for numerical  calculations. 

+ 1  if  j =  1 or  2 (modulo  4) 
sgn(j)  = - 1 if  j = 0 or  3 (modulo  4) (73) 
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5. N U M E R I C A L  S O L U T I O N  

For finite n, the problem reduces to evaluating the cj and mo from the 
polynomial equation (65). Numerically, we find that mo is always greater than 
2, so we can define a real parameter e, by 

mo = c~ a + c~ "a, 0 < c, < 1 (74) 

(The c, defined here is different from that used previously.) The zeros of the 
right-hand side of Eq. (65) occur at cl, ca ..... c, ,  so 

p ( i c j ) f a ( i c ~ ) / p ( -  i c ~ ) f a ( -  ic j )  = - 1, j = 1, 2 . . . . .  n (75) 

Taking logarithms of  both sides, and using considerations from the low- 
temperature expansions of the equation (75) for the appropriate branch cut 
in the complex plane, we may write the equation as 

n - i h i  h2 
2 ~ t a n - l C l - l + c ~ + t a n - 1 7  + t a n - 1  

z=z eTz c~ ca z _  cs c71 _ c~ 

= (n - j + 1/2)7r, j = 1, 2 ..... n (76) 

where hi and ha are given by (64). 
Equation (76) has been solved numerically for a range of values of z 

below the critical point, using the Newton-Raphson method. The computa- 
tion was done on a UNIVAC 1100/42 computer, using double-precision 
floating point arithmetic with 18 significant digits. A solution was assumed 
to have converged only when the relative change of each variable, through 
one iteration, was less than 10-1~. As a measure of the degree to which an 
equation was satisfied, we also calculated the difference between the right- 
and left-hand sides divided by the absolute sum of all the additive terms in 
the equation. This was never greater than I0-lo.  

Solutions were obtained for n = 2-20. Since the n = 2 case can be 
solved analytically, it serves as a guide to the degree of accuracy of the 
solution. Another plausible guide to the accuracy is provided by the fact that 
some quantities tend very rapidly to their known n = oo values, differing 
from them only in the last few digits (see, for example, column 2 in Table I). 
Combining both, we are able to conclude that the numerical results we 
obtained are accurate at least to 11 significant figures. 

5 . 1 ,  S p o n t a n e o u s  M a g n e t i z a t i o n  

The spontaneous magnetization of the system can be easily obtained 
through (66) and is given by ~m 

Trace S d  4 ~ 1 - G .4 
M T r a c e d  ~ = 1 1  1 (77) 

] = 1 Ct 4 

where S = s i s2  ... S n - 1 .  
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Table I. Approximations to the Spontaneous Magnetization for Various Values 
o f  z w i t h  n = 2 - 2 0 "  

n z = 0.4 z = 0.414 z = 0.4142 z = 0.414213 

2 0.02392802714 0.27069383063 0.40964931899 0.52166267553 
3 0.00114718221 0.13961159480 0.27329853612 0.38495721146 
4 0.00003110890 0.06200532571 0.18216108501 0.29280635216 
5 0.00000064786 0.02135243598 0.11642461140 0.22459790868 
6 0.00000001171 0.00548872105 0.06856599103 0.17146657416 
7 0.00000000193 0.00110682362 0.03561995801 0.12882150103 
8 0.0 0.00018921799 0.01572474294 0.09408287799 
9 0.00002906023 0.00583086002 0.06581275992 

10 0.00000415274 0.00185340100 0.04330353924 
11 0.00000056384 0.00052339043 0.02626341718 
12 0.00000007370 0.00013571881 0.01441855726 
13 0.00000000935 0.00003310139 0.00709879411 
14 0.00000000116 0.00000771716 0.00314589825 
15 0.00000000014 0.00000173848 0.00127286235 
16 0.00000000002 0.00000038124 0.00047878871 
17 0.0 0.00000008182 0.00017022932 
18 0.00000001725 0.00005796032 
19 0.00000000358 0.00001908212 
20 0.0 0.0 0.00000000073 0.00000611736 
M~ 0.80554134201 0.48198594815 0.34155136722 0.22944135750 

i 

The rate of convergence to the exact value is at least geometric. 
zc, o~ = 0.414213562373. 

We tabula te  in Table  I the difference o f  the spontaneous  magne t i za t ion  
ca lcula ted  at  a given n f rom the exact  value,  a t  some par t i cu la r  values o f  z. 
The  convergence of  the app rox ima t ions  for  the spon taneous  magne t iza t ion  
per  site to the exact  value is ex t remely  rap id  away  f rom the cri t ical  t empera-  
ture o f  the infinite system (denoted  by To, ~) ,  and  even for  tempera tures  very 
close to T~,~ (e.g., co lumn 5 of  Table  I), the convergence is still a t  least  

geometr ic .  

5.2. The  Cr i t ical  T e m p e r a t u r e  

A n o t h e r  quan t i ty  of  interest  is the es t imat ion  o f  the cri t ical  t empera tu re  
o f  the system and  the way it  converges t oward  the exact  result.  

In  the t h e r m o d y n a m i c  l imit ,  the cri t ical  po in t  can be defined to be the 
po in t  a t  which the spon taneous  magne t i za t ion  o f  the system vanishes as the 
t empera tu re  increases.  A s imilar  defini t ion m a y  be used for  the case when n is 
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finite. F r o m  (77), the spontaneous magnetizat ion will vanish if any of  the cj 
is unity. Since, bo th  f rom the infinite solution (i.e., when n = oo) and the 
low-temperature expansions f rom the equations, all the G are less than unity 
and decrease a s j  increases for all temperatures below the critical temperature,  
one can equivalently define the critical point  for a system with finite n to be 
the point  at which cl = 1. As seen f rom (66), it is also the point  at which 
the maximum eigenvalue o f  the matrix d degenerates. 

A more  convenient  temperature parameter  to use is 

t = cosech~(2J /k~T)  - 1 (78) 

(for T near To,o~, this is propor t ional  to T - Tc,~). F r o m  (64b), we have 

t = (2 - h22)(1 + 2z - z2)(1 + z2)a/(c, 2 + c#2)(1 - z2) 4 (79) 

Also, at the critical point  o f  the infinite system (n = oo), 

t = tc ,~  = 0 (80 )  

Let  tc,~ be the critical value o f  t for  finite n. At  t = to,,, we have cl = 1, 
so f rom (50),f(1)  = 0. Sincef(u)  o c f ( 1 / u )  and p(i) = p ( - i ) ,  if we set u = 1 
in (65), we have 

p( i ) f2( i )  = 0 (81) 

Table II, The  Values of  to,. and cn at  the  Crit ical  Po in t  for  n = 2 -20  
i i 

?l tc,~ Cn 

2 0.38883618289 0.17034166992 
3 0.055708351974 0.069221620115 
4 0.013533606104 0.034470127987 
5 0.0041397721372 0.019108958190 
6 0.0014589742584 0,011351755016 
7 0.00056804454817 0.0070847910329 
8 0.00023846971442 0.0045907985350 
9 0.00010626511883 0.0030646532019 

10 0.000049720759649 0.0020963364563 
11 0.000024234867745 0.0014635757443 
12 0.000012232230534 0.0010397980729 
13 0.0000063637896075 0.00074998870553 
14 0.0000033998957695 0.00054818852449 
15 0.0000018597394040 0.00040543697430 
16 0.0000010389642033 0.00030303841587 
17 0.00000059157832392 0.00022866703980 
18 0.00000034270961999 0.00017404462601 
19 0.00000020169352724 0.00013351912150 
20 0.00000012043354466 0.00010317422824 
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which implies that 

p( i )  = 0 or h lh2  = 0 (82) 

at to,.. Numerically, we find that both hi and h2 are nonnegative, and from 
(64), hi > h2, so h2 must vanish at t = t~,. for all finite values ofn.  Also, for n 

large, z is then close to the limiting critical value ~/2 - 1, so from (79), 

t~,n ~ 8~v/2 c. 2 (83) 

In Table II, the critical value of t calculated at the nth level (t~,.) is given. 
We also give the value of c. at the critical point of the system. We find numer- 
ically that we are able to fit the c. extremely accurately to the formula 

c. = 1.6817928304 exp[-(4.9348022005n - 4.6263770635) 1/2] (84) 

For  n >/ 5, this fits to our numerical accuracy of 11 significant figures. (Even 
for n = 2 it is accurate to seven figures.) It is almost certainly the large-n 
asymptotic form of  c..  The corresponding asymptotic form for t~,n follows 
immediately from (83). 

5.3. Crossover  Phenomenon  

It is interesting to study the critical behavior of the spontaneous mag- 
netization per site below the critical point of the system. In terms of the t 
defined in (78), the exact n = oo result is (8~ 

M = ( -  t) ~ (85) 

where/3 is the critical exponent and is equal to 1/8. However, for finite n, 
and t very close to to,., M vanishes according to the classical law 

M oc ( tc , .  - t )  1f2 (86) 

For  large, but fixed, n, the crossover from (85) to (86) is easily seen in Fig. 2, 
where log M is plotted against log z for various values of n, where 

.r = ( to , .  - t ) / t c , .  (87) 

For  t sufficiently less than to,., this plot is almost a straight line, with slope 
1/8, while for t very close to to,. it changes to one with slope �89 The crossover 
occurs when (t~,. - t) .-~ t . . . .  

We give in Table III rough estimates of the slope of the curve at various 
values of ~- for n = 3 and 6. It is readily seen that even for quite small values 
of n, the crossover is already predominant, and it is possible to get very good 
estimates of/3 provided that we work in the low-temperature region away 
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Fig. 2. Log-log plot of spontaneous magnetization vs. the temperature parameter  ~- for 
n = 3, 6, 10, 20. The crossover can be seen easily even for quite small values of n. 

Table III. Est imates of  ~ f r o m  Slope of  Log-Log Plot  of  Log M vs. log z fo r  
n = 3 a n d 6  

i ii 

n = 3  n = 6  

18.936 0.13197 685.87 0.12518 
15.943 0.13338 406.01 0.12531 
11.607 0.13687 120.07 0.12612 

6.3175 0.14795 59.493 0.12740 
J 

2.4218 0.18212 23.767 0.13151 
0.70898 0.26037 7.3456 0.14618 
0.17427 0.37496 1.8116 0.18763 
0.075442 0.43114 0.43840 0.26202 
0.025400 0.47476 0.12021 0.35373 
0.0075640 0.49062 0.031410 0.44075 
0.0023273 0.49715 0.0048358 0.48612 
0.00088441 0.49901 0.00092492 0.49752 

i IRK 
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from the critical point. This is not surprising, since we have chosen the tem- 
perature parameter t such that M is exactly equal to (tc,~ - 01/8 at all tem- 
peratures below the critical point for n = or. 

To describe the crossover phenomenon, we propose a scaling hypothesis 
similar to that used by Hankey and Stanley for describing the crossover of a 
system from two dimensions to three. (9) 

We assume that the spontaneous magnetization per site as a function 
of n and the temperature parameter t ( = t -  to,~) satisfies the scaling 
hypothesis, i.e., for temperature near the critical point and for n large, the 
spontaneous magnetization per site is asymptotically a generalized homo- 
geneous function, 

M(t,  n) = ItJ~g(1, A,t) (88) 

where/3 = 1 [8 and ~ is a monotonic increasing function of n. 
At t . . . .  the left-hand side of (88) vanishes for all values of n. Since t is 

nonzero at t = tc,~, the scaling function g(1, x) must have a zero for some 
fixed value of x called x0, and at Xo 

a. = Xo/to,. (89) 

Equation (88) now becomes 

M(t, n) = /tlBg(1, xot/tc,.) = ItJag(1, x0(1 - ~)) (90) 

1000.0 

~ "  100-0 

+ 
�9 1 0 . 0  

o n:  4 
x n :  6 
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Fig. 3. P lot  o f  l o g o  + t iM B) vs. ~ for  n = 4, 6, 10, and 20. 
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where r is defined by (87). Hence, we have 

M(t ,  n)/Itl  ~ = a function of 7 only (91) 

I f  the left-hand side of  (91) is plotted against ~-, scaling predicts that all 
the data points near the critical point should collapse asymptotically into a 
single curve. In Fig. 3, log(1 + t i M  8) is plotted against r for n = 4, 6, 10 
and 20. The data support the scaling hypothesis very well. 

6, C O N C L U S I O N  

For  the zero-field Ising model, the variational method converges rapidly 
to the exact results and gives quite good estimates with only a moderate 
amount  of  computational effort. The approximations for M at a given n 
appear to agree with exact series expansions up to and including terms of  the 
order z an- 6. 

I t  has been shown that the system with finite n exhibits a crossover 
phenomenon, and good estimates for the exponent fi can be obtained. 

Finally, the free energy and internal energy per site of the system can be 
written in terms of determinants involving ~ and ~,, so their behavior can 
also be studied. 
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